博客
关于我
【验证码识别】基于GUI不变矩数字验证码识别【Matlab 016期】
阅读量:713 次
发布时间:2019-03-21

本文共 733 字,大约阅读时间需要 2 分钟。

几何不变矩是一种描述图像特征的重要算子,其核心在于能够在图像经过旋转、平移或缩放后仍保持不变的性质。本文将从定义、发展与应用等方面详细阐述几何不变矩的相关知识。

几何不变矩最初由Hu提出,其核心思想是对图像区域的几何特征进行建模。对于一个灰度图像 $f(x, y)$,其 $(p+q)$ 阶几何矩 $M_{pq}$ 定义为:

$$M_{pq} = \iint_{x} x^p y^q f(x, y) dx dy \quad (p, q = 0, 1, \ldots, \infty)$$

零阶矩 $M_0$ 对应图像的“质量”,即图像的总面积。其中一阶矩 $M_{01}$ 和 $M_{10}$ 可以用来确定图像的质心坐标 $(\mu_x, \mu_y)$。中心矩则是相对于质心平移后的矩,形式为:

$$U_{pq} = \iint_{x} (x - \mu_x)^p (y - \mu_y)^q f(x, y) dx dy$$

通过定义 $Z_{pq} = \frac{U_{pq}}{(U_{20} + U_{02})^{p+q+2}}$,Hu提出了7个具有不变特性的几何矩特征,这些特征能够有效描述图像的几何信息。

在图像分析领域,几何不变矩主要应用于物体识别与分类、图像分割等任务。由于其不变性质,使得图像在旋转、缩放或平移后依然能有效描述,因此具有较强的鲁棒性。在大规模图像库中,几何不变矩常被用作快速筛选的特征,可有效提高搜索效率。

本研究主要完成了以下工作:实现了几何不变矩的计算算法,对图像进行中值滤波、归一化以及二值化等处理,并对结果进行可视化分析。实验结果表明,几何不变矩能够有效提取图像的几何特征,且在图像分类任务中表现良好。

版本:2014a

转载地址:http://vejrz.baihongyu.com/

你可能感兴趣的文章
NFS远程目录挂载
查看>>
nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
查看>>
NFV商用可行新华三vBRAS方案实践验证
查看>>
ng build --aot --prod生成文件报错
查看>>
ng 指令的自定义、使用
查看>>
nghttp3使用指南
查看>>
Nginx
查看>>
nginx + etcd 动态负载均衡实践(三)—— 基于nginx-upsync-module实现
查看>>
nginx + etcd 动态负载均衡实践(二)—— 组件安装
查看>>
nginx + etcd 动态负载均衡实践(四)—— 基于confd实现
查看>>
Nginx + Spring Boot 实现负载均衡
查看>>
Nginx + uWSGI + Flask + Vhost
查看>>
Nginx - Header详解
查看>>
Nginx - 反向代理、负载均衡、动静分离、底层原理(案例实战分析)
查看>>
nginx 1.24.0 安装nginx最新稳定版
查看>>
nginx 301 永久重定向
查看>>
nginx css,js合并插件,淘宝nginx合并js,css插件
查看>>
Nginx gateway集群和动态网关
查看>>
Nginx Location配置总结
查看>>
Nginx log文件写入失败?log文件权限设置问题
查看>>